Design iGuzzini

iGuzzini

Last information update: May 2018

Minimal 15 cells - Wide Flood beam - Tunable White - LED

Product code Q788

Technical description

Linear 15 optic element recessed miniaturised luminaire. Using LED lamps with a high colour rendering index and a different colour temperature allows dynamic light modulation to be obtained. The variation is achieved by mixing an emission of 8 x 2700K LEDs and 7 x 5700K LEDs. Despite the disparity of lamps that use extreme channels - 2700K and 5700K - the intensity of the flux emitted remains the same. Moreover, even when products of different sizes are used, the colour temperature remains constant and uniform. Main body with die-cast aluminium radiant surface, version with perimeter surface frame. Metallised, thermoplastic, high definition Opti Beam reflectors, integrated in a set-back position in the anti-glare screen. The product is designed to be used together with codes 6170 + M630 to obtain a solution suitable for small to medium systems that can be programmed with a DALI protocol via a simple and intuitive user touch-panel. Other management systems are also available with a separate code for larger systems that require the intervention of a specialised technician to programme them: the MH97 + MH93 + MI02 group offers a DALI / KNX programmable solution, and the MH97 + MH93 + M618 group allows the system management to be extended to remote devices like tablet and smartphones too.

Installation

Recessed with steel wire springs for false ceilings from 1 to 25 mm thick - preparation hole 24 x 276.

Dimension (mm)

279x28x50

Colour

White (01) | White/Brass (41) | Black/Black (43) | Black/White (47) | Grey/Black (74) | (E7)

Weight (Kg) 0.88

Mounting

wall recessed|ceiling recessed

Wiring

DALI control gear units included. Different management systems are available with a separate code. For technical details, properties and connection procedures see the instruction sheet.

Product configuration: Q788

Product characteristics Total lighting output [Lm]: 1909 Total power [W]: 32.8 Luminous efficacy [Lm/W]: 58.2 Life Time: > 50,000h - L80 - B10 (Ta 25°C)	Total luminous flux at or above an angle of 90° [Lm]: 0 Emergency luminous flux [Lm]: / Voltage [V]: - Number of optical assemblies: 1
Optical assembly Characteristics Type 1 Light Output Ratio (L.O.R.) [%]: 83 Lamp code: LED ZVEI Code: LED Nominal power [W]: 27 Nominal luminous [Lm]: 2300	Number of lamps for optical assembly: 1 Socket: / Ballast losses [W]: 5.8 Colour temperature [K]: / CRI: /
Lamp maximum intensity [cd]: / Beam angle [°]: 58°	Wavelength [Nm]: / MacAdam Step: /

Complies with EN60598-1 and pertinent regulations

Polar

Imax=2433 cd	CIE	Lux			
90° 180° 90°	nL 0.83 100-100-100-100-83	h	d	Em	Emax
	UGR 15.8-15.8 DIN A.61 UTE	2	2.2	484	603
K X Z X	0.83A+0.00T F"1=996	4	4.4	121	151
2500	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	6.7	54	67
α=58°	LG3 L<500 cd/m ² at 65°	8	8.9	30	38

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	79	77	76	78	77	76	73	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	86	85	83	100

Luminance curve limit

A G	1.15	2000	1000	500		<-300		
в	1.50		2000	1000	750	500	<=300	
C	1.85			2000		1000	500	<=300
					~/.~			
								- 6
				$ \downarrow \downarrow$				4
-								- 2
	_						$+ \square$	a
							$\langle \ $	1
	2	3 4 5	5681	∩ ³	2 3	4 5 6	8 10 ⁴	cd/m ²
	в	B 1.50 C 1.85	B 1.50 C 1.85	B 1.50 2000 C 1.85	B 1.50 2000 1000 C 1.85 2000	B 1.50 2000 1000 750 C 1.85 2000	B 1.50 2000 1000 750 500 C 1.65 2000 1000 1000 1000	B 1.50 2000 1000 750 500 <-300 C 1.85 2000 1000 500

UGR diagram

0.000000											
Rifle	ct.:										
ce il/c	av	0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls	3	0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work pl.		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Room dim				viewed					viewed		
x	У		C	rosswise	e				endwise	8	
2H	2H	16.4	16.8	16.6	17.1	17.3	16.4	16.8	16.6	17.1	17.3
	ЗH	16.2	16.7	16.5	16.9	17.2	16.2	16.7	16.5	16.9	17.2
	4H	16.2	16.6	16.5	16.8	17.1	16.2	16.6	16.5	16.8	17.1
	6H	16.1	16.5	16.4	16.8	17.1	16.1	16.5	16.4	16.8	17.1
	BH	16.1	16.4	16.4	16.7	17.1	16.1	16.4	16.4	16.7	17.1
	12H	16.0	16.4	16.4	16.7	17.0	16.0	16.4	16.4	16.7	17.0
4H	2H	16.2	16.6	16.5	16.8	17.1	16.2	16.6	16.5	16.8	17.1
	ЗH	16.0	16.4	16.4	16.7	17.0	16.0	16.4	16.4	16.7	17.0
	4H	15.9	16.2	16.3	16.6	17.0	15.9	16.2	16.3	16.6	17.0
	6H	15.8	16.1	16.3	16.5	16.9	15.8	16.1	16.3	16.5	16.9
	8H	15.8	16.0	16.2	16.4	16.9	15.8	16.0	16.2	16.4	16.9
	12H	15.7	16.0	16.2	16.4	16.8	15.7	16.0	16.2	16.4	16.8
вн	4H	15.8	16.0	16.2	16.4	16.9	15.8	16.0	16.2	16.4	16.9
	6H	15.7	15.9	16.2	16.3	16.8	15.7	15.9	16.2	16.3	16.8
	HS	15.6	15.8	16.1	16.3	16.8	15.6	15.8	16.1	16.3	16.8
	12H	15.6	15.7	16.1	16.2	16.7	15.6	15.7	16.1	16.2	16.7
12H	4H	15.7	16.0	16.2	16.4	16.8	15.7	16.0	16.2	16.4	16.8
	6H	15.6	15.8	16.1	16.3	16.8	15.6	15.8	16.1	16.3	16.8
	8H	15.6	15.7	16.1	16.2	16.7	15.6	15.7	16.1	16.2	16.7
Varia	tions wi	th the ot	oserverp	osition a	at spacin	ig:					
S =	1.0H		5 / -24	.9	6.5 / -24.9						
	1.5H		4 / -25	.6	9.4 / -25.6						
	2.0H		11	.4 / -25	5.8	11.4 / -25.8					