
Laser Blade XS

Design iGuzzini

iGuzzini

Last information update: June 2018

Frame 15 cells - Flood beam - LED

Product code

Q520

Technical description

Linear miniaturised recessed luminaire with 15 optical elements for LED lamps - fixed optics. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient flow and a high level of controlled glare visual comfort. Main body with die-cast aluminium radiant surface, version with perimeter surface frame. Metallised, thermoplastic, high definition Opti Beam reflectors, integrated in a set-back position in the anti-glare screen. Supplied with DALI power supply unit connected to the luminaire.

Installation

Recessed with steel wire springs for false ceilings from 1 to 25 mm thick - preparation hole 24 x 276.

Dimension (mm)

280x28x50

Colour

White (01) | White/Brass (41) | Black/Black (43) | Black/White (47) | Grey/Black (74) | (E7)

Weight (Kg)

0.75

Mounting

wall recessed|ceiling recessed

Wiring

On the power supply unit with terminal board included.

Notes

Complies with EN60598-1 and pertinent regulations

Product configuration: Q520

Product characteristics

Total lighting output [Lm]: 1785 Total power [W]: 33

Luminous efficacy [Lm/W]: 54.1

Life Time: > 50,000h - L80 - B10 (Ta 25°C)

Total luminous flux at or above an angle of 90° [Lm]: 0

Emergency luminous flux [Lm]: /

Voltage [V]: 230 Number of optical assemblies: 1

Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [%]: 83 Lamp code: LED ZVEI Code: LED

Nominal power [W]: 29 Nominal luminous [Lm]: 2150 Lamp maximum intensity [cd]: /

Beam angle [°]: 42°

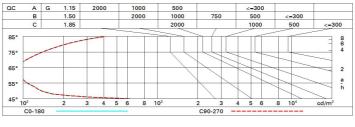
Number of lamps for optical assembly: 1

Socket: /

Ballast losses [W]: 4 Colour temperature [K]: 2700

CRI: 90

Wavelength [Nm]: / MacAdam Step: 3


Polar

lmax=3665 cd	CIE	Lux			
90° 180° 90°	nL 0.83 100-100-100-100-83	h	d	Em	Emax
	UGR <10-<10 DIN A.61 UTE	2	1.5	746	910
	0.83A+0.00T F"1=999	4	3.1	186	227
4000	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	4.6	83	101
α=42°	LG3 L<500 cd/m ² at 65°	8	6.1	47	57

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	80	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	87	85	83	100

Luminance curve limit

UGR diagram

Roon	av	0.70										
walls work Roon		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
Roon		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30	
	work pl. Room dim		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
			viewed					viewed				
X	У		(crosswis	osswise			endwise				
2H	2H	6.4	6.8	6.6	7.1	7.3	6.4	6.8	6.6	7.1	7.3	
	ЗН	6.2	6.7	6.5	6.9	7.2	6.2	6.7	6.5	6.9	7.2	
	4H	6.2	6.6	6.5	6.8	7.1	6.2	6.6	6.5	6.8	7.1	
	бН	6.1	6.5	6.4	6.8	7.1	6.1	6.5	6.4	8.6	7.1	
	H8	6.1	6.4	6.4	6.7	7.1	6.0	6.4	6.4	6.7	7.1	
	12H	6.0	6.4	6.4	6.7	7.0	6.0	6.3	6.4	6.7	7.0	
4H	2H	6.2	6.6	6.5	6.8	7.1	6.2	6.6	6.5	6.8	7.1	
	3H	6.0	6.4	6.4	6.7	7.0	6.0	6.4	6.4	6.7	7.0	
	4H	5.9	6.2	6.3	6.6	7.0	5.9	6.2	6.3	6.6	7.0	
	6H	5.8	6.1	6.3	6.5	6.9	5.8	6.1	6.2	6.5	6.9	
	HS	5.8	6.0	6.2	6.4	6.9	5.8	6.0	6.2	6.4	6.9	
	12H	5.7	6.0	6.2	6.4	6.9	5.7	6.0	6.2	6.4	6.8	
вн	4H	5.8	6.0	6.2	6.4	6.9	5.8	6.0	6.2	6.4	6.9	
	6H	5.7	5.9	6.2	6.3	8.6	5.7	5.9	6.2	6.3	6.8	
	HS	5.6	5.8	6.1	6.3	8.6	5.6	5.8	6.1	6.3	6.8	
	12H	5.6	5.8	6.1	6.2	8.8	5.6	5.7	6.1	6.2	6.8	
12H	4H	5.7	6.0	6.2	6.4	6.8	5.7	6.0	6.2	6.4	6.9	
	6H	5.6	5.8	6.1	6.3	6.8	5.7	5.8	6.1	6.3	6.8	
	HS	5.6	5.7	6.1	6.2	8.6	5.6	5.8	6.1	6.2	6.8	
Varia	tions wi	th the ol	bserver	noitieo	at spacir	ng:						
=	1.0H	7.0 / -14.5					7.0 / -14.5					
	1.5H	9.8 / -14.7					9.8 / -14.7					