Design iGuzzini

iGuzzini

Last information update: June 2018

Frame 15 cells - Flood beam - LED

Product code Q514

Technical description

Linear miniaturised recessed luminaire with 15 optical elements for LED lamps - fixed optics. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient flow and a high level of controlled glare visual comfort. Main body with die-cast aluminium radiant surface, version with perimeter surface frame. Metallised, thermoplastic, high definition Opti Beam reflectors, integrated in a set-back position in the anti-glare screen. Supplied with DALI power supply unit connected to the luminaire.

Installation

Recessed with steel wire springs for false ceilings from 1 to 25 mm thick - preparation hole 24 x 276.

Dimension (mm) 280x28x50

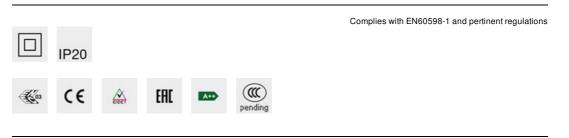
200720730

Colour

White (01) | White/Brass (41) | Black/Black (43) | Black/White (47) | Grey/Black (74) | (E7)

Weight (Kg)

0.75


Mounting

wall recessed ceiling recessed

Wiring

On the power supply unit with terminal board included.

Notes

Product configuration: Q514

Product characteristics

 Total lighting output [Lm]: 2158
 Total luminous flux at or above an angle of 90° [Lm]: 0

 Total power [W]: 33
 Emergency luminous flux [Lm]: /

 Luminous efficacy [Lm/W]: 65.4
 Voltage [V]: 230

 Life Time: > 50,000h - L80 - B10 (Ta 25°C)
 Number of optical assemblies: 1

Optical assembly Characteristics Type 1

 Light Output Ratio (L.O.R.) [%]: 83
 Number of lamps for optical assembly: 1

 Lamp code: LED
 Socket: /

 ZVEI Code: LED
 Ballast losses [W]: 4

 Nominal power [W]: 29
 Colour temperature [K]: 4000

 Nominal luminous [Lm]: 2600
 CRI: 90

 Lamp maximum intensity [cd]: /
 Wavelength [Nm]: /

 Beam angle [°]: 42°
 MacAdam Step: 3

Polar

		1			
Imax=4432 cd	CIE	Lux			
90° 180° 90°		h	d	Em	Emax
	UGR <10-<10 DIN A.61 UTE	2	1.5	902	1100
X X X	0.83A+0.00T F"1=999	4	3.1	226	275
5000	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	4.6	100	122
α=42°	LG3 L<1000 cd/m ² at 65°	8	6.1	56	69

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	80	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	87	85	83	100

Luminance curve limit

ac	Α	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<-300	
	С		1.85			2000		1000	500	<-300
						-				
85° [8
										- 4
75°		/								~
35°	1									
»° [2
55°	1									a
55°	1	~						$\langle \rangle$	$\langle \rangle$	h
15° .										
+5 10	0 ²		2	3 4 5	6 8 1	0 ³	2 3	4 5 6	8 10 ⁴	cd/m ²
	C0-18	0					C90-270 -			

Difla												
Riflect.: ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
walls work pl. Room dim		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30	
		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
		0.20	0.20	viewed		0.20	0.20	0.20	viewed	0.20	0.20	
x	у		crosswis	e	endwise							
2H	2H	7.0	7.5	7.3	7.7	7.9	7.0	7.5	7.3	7.7	7.9	
211	3H	6.9	7.3	7.2	7.6	7.9	6.9	7.3	7.2	7.6	7.9	
	4H	6.8	7.2	7.1	7.5	7.8	6.8	7.2	7.1	7.5	7.8	
	6H	6.7	7.1	7.1	7.4	7.7	6.7	7.1	7.1	7.4	7.7	
	BH	6.7	7.1	7.1	7.4	7.7	6.7	7.1	7.1	7.4	7.7	
	12H	6.7	7.0	7.0	7.4	7.7	6.7	7.0	7.0	7.3	7.7	
4H	2H	6.8	7.2	7.1	7.5	7.8	6.8	7.2	7.1	7.5	7.8	
	ЗH	6.7	7.0	7.0	7.3	7.7	6.7	7.0	7.0	7.3	7.7	
	4H	6.6	6.9	7.0	7.2	7.6	6.6	6.9	7.0	7.2	7.6	
	6H	6.5	6.8	6.9	7.2	7.6	6.5	6.8	6.9	7.2	7.6	
	HS	6.5	6.7	6.9	7.1	7.5	6.4	6.7	6.9	7.1	7.5	
	12H	6.4	6.6	6.9	7.1	7.5	6.4	6.6	6.8	7.0	7.5	
вн	4H	6.4	6.7	6.9	7.1	7.5	6.5	6.7	6.9	7.1	7.5	
	6H	6.4	6.6	6.8	7.0	7.5	6.4	6.6	6.8	7.0	7.5	
	HS	6.3	6.5	6.8	6.9	7.4	6.3	6.5	6.8	6.9	7.4	
	12H	6.3	6.4	6.8	6.9	7.4	6.3	6.4	6.8	6.9	7.4	
12H	4H	6.4	6.6	6.8	7.0	7.5	6.4	6.6	6.9	7.1	7.5	
	6H	6.3	6.5	6.8	6.9	7.4	6.3	6.5	6.8	7.0	7.5	
	8H	6.3	6.4	6.8	6.9	7.4	6.3	6.4	6.8	6.9	7.4	
Varia	tions wi	th the ol	oserver p	osition	at spacir	ng:						
S =	1.0H	7.0 / -14.5						7.0 / -14.5				
	1.5H	9.8 / -14.7						9.8 / -14.7				