View Opti Beam Lens quadrato

Design iGuzzini / Arup

.

iGuzzini

Last information update: June 2018

square large body spotlight - wide flood

Product code Q354

Technical description

Indoor adjustable spotlight with adapter for installation on a three-phase/DALI track. Device made of die-cast aluminium and a front part made of a thermoplastic material. Spotlight double adjustability allows a 360° rotation about the vertical axis and 90° tilting relative to the horizontal plane. Optical assembly consisting of Warm White tone 3000K CRI90 LEDs with OPTIBEAM LENS technology and a wide flood light beam. Dimmable DALI driver built-in to box with a semi-hidden system on track. Option of installing a range of flat accessories including an OPTIBEAM REFRACTOR for varying light distribution, an elliptical distribution refractor, a louver, a soft lens and an outdoor accessory like an asymmetric visor for eliminating stray light dispersion on the ceiling.

Installation

On a three-phase/DALI electrified track

Dimension (mm) 156x156x193

Colour Black (04) | Black/White (47)

Weight (Kg)

1.79

Mounting

dali track three circuit track

Wiring

Product complete with DALI dimmable components, housed in a semi-hidden box on the track.

Product configuration: Q354

Product characteristics Total lighting output [Lm]: 2296 Total power [W]: 29 Luminous efficacy [Lm/W]: 79.2 Life Time: > 50,000h - L80 - B10 (Ta 25°C)

Optical assembly Characteristics Type 1 Light Output Ratio (L.O.R.) [%]: 82 Lamp code: LED ZVEI Code: LED Nominal power [W]: 25 Nominal luminous [Lm]: 2800 Lamp maximum intensity [cd]: / Beam angle [°]: 46°

Total luminous flux at or above an angle of 90° [Lm]: 0 Emergency luminous flux [Lm]: / Voltage [V]: -

Complies with EN60598-1 and pertinent regulations

Number of optical assemblies: 1

Number of lamps for optical assembly: 1 Socket: / Ballast losses [W]: 4 Colour temperature [K]: 3000 CRI: 90 Wavelength [Nm]: / MacAdam Step: 2

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	70	65	62	59	64	61	61	58	70
1.0	74	69	66	64	68	66	65	62	76
1.5	79	75	73	70	74	72	71	68	83
2.0	82	79	77	75	78	76	75	72	88
2.5	83	81	80	78	80	79	78	75	92
3.0	85	83	82	81	82	81	80	77	94
4.0	86	85	84	83	83	83	81	79	96
5.0	87	86	85	84	84	84	82	80	98

Luminance curve limit

QC	Α	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<=300	
	С		1.85			2000		1000	500	<=300
				/ .	/ /					
35°										8
										4
75°				//			_			
						1	1			
85°	<u> </u>			_			11			2
65°					$\langle \rangle$					2 a
					\searrow		\rightarrow			1 1
55°					\mathbf{k}					a
	6	8	10 ³		2	3 4	5 6	8 10	4	a

UGR diagram

Rifle	et ·										
ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls work pl.		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Room dim				viewed			10000000		viewed		
x	У	crosswise					endwise				
2H	2H	16.8	17.5	17.1	17.8	18.0	16.8	17.5	17.1	17.8	18.0
	ЗН	17.4	18.0	17.7	18.3	18.6	17.0	17.6	17.3	17.9	18.
	4H	17.6	18.2	18.0	18.5	18.8	17.0	17.6	17.3	17.9	18.2
	6H	17.8	18.3	18.1	18.6	19.0	17.0	17.5	17.3	17.8	18.
	BH	17.8	18.3	18.2	18.7	19.0	17.0	17.5	17.3	17.8	18.
	12H	17.8	18.3	18.2	18.6	19.0	16.9	17.4	17.3	17.8	18.
4H	2H	17.0	17.6	17.3	17.9	18.2	17.6	18.2	18.0	18.5	18.
	ЗH	17.7	18.2	18.1	18.6	18.9	17.9	18.4	18.3	18.8	19.
	4H	18.1	18.5	18.5	18.9	19.3	18.1	18.5	18.5	18.9	19.
	6H	18.3	18.7	18.7	19.1	19.5	18.2	18.5	18.6	18.9	19.
	HS	18.4	18.7	18.8	19.1	19.6	18.2	18.5	18.6	18.9	19.
	12H	18.4	18.7	18.8	19.1	19.6	18.1	18.5	18.6	18.9	19.
вн	4H	18.2	18.5	18.6	18.9	19.4	18.4	1 <mark>8.7</mark>	18.8	19.1	19.
	6H	18.5	18.8	18.9	19.2	19.7	18.5	18.8	19.0	19.2	19.
	BH	18.6	18.8	19.0	19.3	19.8	18.6	18.8	19.0	19.3	19.0
	12H	18.6	18.8	19.1	19.3	19.8	18.6	18.8	19.1	19.3	19.
12H	4H	18.1	18.5	18.6	18.9	19.3	<mark>18.</mark> 4	18.7	18.8	19.1	19.
	6H	18.5	18.7	18.9	19.2	19.7	18.5	18.8	19.0	19.2	19.
	H8	18.6	18.8	19.1	19.3	19.8	18.6	18.8	19.1	19.3	19.
Varia	itions wi	th the ob	oserver p	osition a	at spacin	g:					
S =	1.0H		1	.7 / -1	2	1.7 / -1.2					
	1.5H	3.5 / -1.6						3	.5 / -1.	6	