Design iGuzzini / Arup

iGuzzini

small body - warm white - white flood optic

Last information update: May 2018

Product code P638

Technical description

Adjustable spotlight with adapter for installation on electrified track for a linear PCB LED lamp with a Warm White (3000K) tone. Product complete with super pure anodized aluminium reflector to guarantee wide flood light distribution. DALI ballast integrated in the body. Die-cast aluminium optical assembly. Rotates 360° about the vertical axis and tilts 90° relative to the horizontal plane. Passive heat dissipation. Option of installing a range of outdoor accessories including an anti-glare and an asymmetric screen.

Installation

Dimension (mm) 130x110

On an electrified track or base

Colour Black (04) | Black/White (47)

Weight (Kg) 0.9

Mounting

three circuit track|ceiling surface

Wiring

Product complete with electronic components

IP20 IP40 for optical assembly

Product configuration: P638

Product characteristics Total lighting output [Lm]: 1169.9 Total power [W]: 19.8 Luminous efficacy [Lm/W]: 59.1 Life Time: 50,000h - L80 - B10 (Ta 25°C)	Total luminous flux at or above an angle of 90° [Lm]: 0 Emergency luminous flux [Lm]: / Voltage [V]: - Number of optical assemblies: 1
Optical assembly Characteristics Type 1 Light Output Ratio (L.O.R.) [%]: 90 Lamp code: LED ZVEI Code: LED Nominal power [W]: 17 Nominal luminous [Lm]: 1300	Number of lamps for optical assembly: 1 Socket: / Ballast losses [W]: 2.8 Colour temperature [K]: 3000 CRI: 90
Lamp maximum intensity [cd]: / Beam angle [°]: 82° / 104°	Wavelength [Nm]: / MacAdam Step: 2

Polar

		Name and the second sec					
Imax=563 cd	C5-185 γ=14°		Lux				
90°	80° 90°	nL 0.90 63-92-99-100-90	h	d1	d2	Em	Emax
		UGR 26.5-31.3 DIN A.51	1	1.7	2.6	360	547
	\rightarrow	UTE 0.90C+0.00T F"1=629	2	3.5	5.1	90	137
600	D/	F"1+F"2=916 F"1+F"2+F"3=992	3	5.2	7.7	40	61
α=82° / 104°			4	7	10.2	22	34

Complies with EN60598-1 and pertinent regulations

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	66	58	52	48	56	51	51	46	51
1.0	71	64	59	55	63	58	58	52	58
1.5	80	74	70	66	73	69	68	63	70
2.0	85	80	77	74	79	75	74	70	78
2.5	87	84	81	78	82	79	78	74	83
3.0	89	86	84	81	84	82	81	77	86
4.0	91	89	87	85	87	85	84	80	89
5.0	92	90	89	87	89	87	86	82	91

Luminance curve limit

QC	Α	G	1.15	200	0	10	000		500			<-30	0			
	в		1.50			20	000		1000	750		500		<=300		
	С		1.85						2000			1000		500	<=3	00
85°									+			T		T		8
75°								-	$\left\{ \left\{ \right. \right\}$	H	\square					4
65°									$\overline{}$	\sim		\uparrow				2 a
55°														\mathbf{n}		ĥ
45° 10	0 ²		2	3	4 5	6	8	10 ³		2 3	4	5 (6 8	10 ⁴	cd/m ²	
	C0-18	0 .				-				C90-270						

UGR diagram

Rifleo ceil/c walls											
walls	av	0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
	walls		0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work pl.		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Room dim				viewed			0.0000000		viewed		
x	У		C	rosswis	e			endwise			
2H	2H	25.9	26.9	26.3	27.2	27.4	30.2	31.2	30.5	31.4	31.7
	ЗH	25.9	26.8	26.3	27.1	27.4	30.3	31.1	30.6	31.4	31.7
	4H	25.9	26.7	26.2	27.0	27.3	30.2	31.0	30.6	31.3	31.7
	6H	25.8	26.6	26.2	26.9	27.2	30.2	30.9	30.5	31.2	31.0
	BH	25.8	26.5	26.2	26.8	27.2	30.1	30.8	30.5	31.2	31.5
	<mark>1</mark> 2H	25.8	26.4	26.1	26.8	27.1	30. <mark>1</mark>	30.8	30.5	31.1	31.5
4H	2H	26.6	27.4	26.9	27.7	28.0	31.1	31.9	31.5	32.2	32.5
	ЗH	26.6	27.3	27.0	27.6	28.0	31.4	32.1	31.8	32.4	32.8
	4H	26.6	27.2	27.0	27.5	27.9	31.4	32.0	31.8	32.4	32.8
	6H	26.5	27.0	27.0	27.4	27.9	31.4	31.9	31.8	32.3	32.7
	BH	26.5	27.0	26.9	27.4	27.8	31.3	31.8	31.8	32.2	32.7
	12H	26.4	26.9	26.9	27.3	27.8	31.3	31.7	31.7	32.1	32.0
вн	4H	26.7	27.2	27.2	27.6	28.1	31.4	31.9	31.8	32.3	32.7
	6H	26.7	27.1	27.2	27.5	28.0	31.4	31.8	31.9	32.2	32.7
	BH	26.7	27.0	27.1	27.5	28.0	31.4	31.7	31.9	32.2	32.
	12H	26.6	26.9	27.1	27.4	27.9	31.3	31.6	31.8	32.1	32.0
12H	4H	26.7	27.1	27.2	27.6	28.0	31.3	31.8	31.8	32.2	32.7
	6H	26.7	27.0	27.2	27.5	28.0	31.4	31.7	31.8	32.2	32.7
	8H	26.7	27.0	27.2	27.5	28.0	31.3	31.6	31.9	32.1	32.0
Varia	tions wi	th the ob	oserverp	osition	at spacin	Ig:	545-				
5 =	1.0H		1	.0 / -2	.0	0.4 / -0.4					
	1.5H		1	.8 / -4	.4	0.7 / -1.4					