Design iGuzzini

iGuzzini

Last information update: June 2018

recessed adjustable

Product code

P464

Technical description

Round adjustable luminaire designed for housing 2700K Warm White COB LED light sources with high colour rendering and OPTIBEAM reflector made of thermoplastic material. Rim made of white-coated die-cast aluminium, upper barrel made of blackcoated thermoplastic for guaranteeing maximum visual comfort and preventing stray light dispersion, black-coated extruded aluminium heat sink. Wide flood optic. Adjustable internally around the horizontal axis by 35° and around the vertical axis by 358°. Passive cooling system. Product inclusive of electronic components.

Installation

Recessed installation in false ceilings with 1 mm to 20 mm thickness with steel springs.

Dimension (mm)

Ø136x124

Colour

White (01)

Weight (Kg)

1.3

Mounting

ceiling surface

Wiring

Product inclusive of electronic components.

Complies with EN60598-1 and pertinent regulations

EHC

Product configuration: P464

Product characteristics

Total lighting output [Lm]: 1840 Total power [W]: 38.3

Luminous efficacy [Lm/W]: 48 Life Time: > 50,000h - L80 - B10 (Ta 25°C)

Total luminous flux at or above an angle of 90° [Lm]: 0

Emergency luminous flux [Lm]: /

Voltage [V]: -

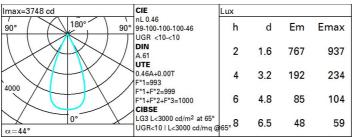
Number of optical assemblies: 1

Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [%]: 46 Lamp code: LED

ZVEI Code: LED Nominal power [W]: 34 Nominal luminous [Lm]: 4000 Lamp maximum intensity [cd]: / Beam angle [°]: 44°

Number of lamps for optical assembly: 1


Socket:

Ballast losses [W]: 4.3 Colour temperature [K]: 2700

CRI: 90

Wavelength [Nm]: / MacAdam Step: 2

Polar

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	41	39	38	37	39	38	37	36	78
1.0	43	41	40	39	41	40	39	38	83
1.5	45	44	43	42	43	42	42	41	88
2.0	47	46	45	44	45	44	44	43	93
2.5	48	47	46	46	46	46	45	44	96
3.0	48	48	47	47	47	47	46	45	98
4.0	49	48	48	48	48	47	47	46	99
5.0	49	49	49	48	48	48	47	46	100

Luminance curve limit

QC	Α	G	1.15	2	000		1	000		500			<=30	10				
	В		1.50				2	000		1000	750		500)		<=300		
	С		1.85							2000			100	0		500	<=3	00
						_	_	_	-		_ /							
85°						Т							Ш		Т	П	=	8
75°								-										4
/5								{		//			\ ·	-	+	_	-	
65°					_			۷,					_	\				2
03								-	~	/			1	_		-	-	-
55°				\perp	_	_			1	-			_	_	\rightarrow	_	_	a
00															1	_	_ ~	h
45°																		
45 10	0 ²		2	3	4	5	6	8	10 ³		2 3	4	5	6	8	10 ⁴	cd/m ²	
	C0-180	1									C90-270							

0.50	0.50	0.30				
0.50 0.20	0.30	0.30				
	0.20	0.20				
viewed						
endwise						
9.4	9.9	10.2				
9.3	9.8	10.				
9.3	9.7	10.0				
9.2	9.6	9.9				
9.2	9.6	9.9				
9.2	9.5	9.9				
9.3	9.7	10.0				
9.2	9.6	9.9				
9.1	9.5	9.9				
9.1	9.4	9.8				
9.1	9.3	9.8				
9.0	9.3	9.7				
9.1	9.4	9.8				
9.1	9.3	9.8				
9.1	9.3	9.8				
9.1	9.2	9.8				
9.1	9.4	9.8				
9.1	9.3	9.8				
9.1	9.3	9.8				
5 / -7	.5					
2 / -8	.1					
	2 / -8	5 / -7.5 2 / -8.1 2 / -8.3				