Design iGuzzini

iGuzzini

Last information update: May 2018

pendant - Warm White - Medium Optic

Product code N282

Technical description

Pendant luminaire equipped with a three-phase adapter for electrified tracks, made of die-cast aluminium and thermoplastic material. The pendant system consists of steel cables L=2000 that provide a simple mechanical anchoring system. Having been rotated and tilted, the luminaire can be locked mechanically in position to ensure efficient light aiming (during maintenance operations too). Luminaire for high output C.O.B.technology LED lamp with monochrome emission in a warm white colour tone (3000K) CRI 90. Medium optic. Equipped with electronic ballast. Equipped with an accessory holding ring designed to contain a flat accessory. An external component may also be applied, such as directional flaps with 360° rotation.

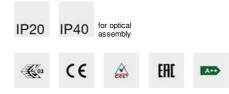
Installation

On an electrified track

ø140

Ø140x296

Dimension (mm)


Colour White (01) | Black (04)

Weight (Kg) 2.4

Mounting three circuit track pendant|ceiling surface

Wiring

product complete with electronic components

Product configuration: N282

Product characteristics

Total lighting output [Lm]: 3944 Total power [W]: 44.1 Luminous efficacy [Lm/W]: 89.4 Life Time: > 50,000h - L80 - B10 (Ta 25°C)

Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [%]: 79 Lamp code: LED ZVEI Code: LED Nominal power [W]: 41 Nominal luminous [Lm]: 5000 Lamp maximum intensity [cd]: / Beam angle [°]: 16° Total luminous flux at or above an angle of 90 $^{\circ}$ [Lm]: 0 Emergency luminous flux [Lm]: / Voltage [V]: - Number of optical assemblies: 1

Complies with EN60598-1 and pertinent regulations

Number of lamps for optical assembly: 1 Socket: / Ballast losses [W]: 3.1 Colour temperature [K]: 3000 CRI: 90 Wavelength [Nm]: / MacAdam Step: 2

Polar					
		Lux			
90° (180°) 90° s	nL 0.79 99-100-100-100-79 UGR <10-<10	h	d	Em	Emax
	DIN A.61	2	0.6	5577	6947
	UTE 0.79A+0.00T F"1=993	4	1.1	1394	1737
	F"1+F"2=998 F"1+F"2+F"3=1000 CIBSE	6	1.7	620	772
α=16°	LG3 L<1500 cd/m ² at 65°	8	2.2	349	434

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	71	67	65	63	67	64	64	62	78
1.0	74	71	68	67	70	68	68	65	83
1.5	78	75	73	72	74	73	72	70	88
2.0	80	78	77	76	77	76	75	73	93
2.5	82	80	79	78	79	78	77	75	96
3.0	83	82	81	80	81	80	79	77	98
4.0	84	83	83	82	82	81	80	78	99
5.0	84	84	83	83	82	82	81	79	100

Luminance curve limit

QC	A	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<-300	
	С		1.85			2000		1000	500	<=300
						-	_ / _	/ /		
85°										8
										- 4
75°									1	-
35°										
05										2
55°										a
55						-		$\leq 1^{\circ}$	\sim	h
45°.						-				
1 1	0 ²		2	3 4 5	6 8 1	03	2 3	4 5 6	8 10 ⁴	cd/m ²
	C0-180	b			_		C90-270 -			

UGR diagram

Difle												
Rifle		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
ceil/cav walls work pl.		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30	
		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
Room dim		viewed				viewed						
x y			0	crosswis	e	endwise						
2H	2H	4.3	6.4	4.7	6.7	7.0	4.3	6.4	4.7	6.7	7.0	
	ЗН	4.5	6.0	4.8	6.3	6.7	4.2	5.8	4.6	6.1	6.4	
	4H	4.6	5.8	4.9	6.2	6.5	4.2	5.5	4.6	5.8	6.2	
	6H	4.7	5.6	5.1	6.0	6.3	4.2	5.2	4.6	5.5	5.9	
	BH	4.7	5.7	5.1	6.0	6.4	4.2	5.2	4.6	5.5	5.9	
	12H	4.7	5.7	5.1	6.1	6.5	4.1	5.2	4.5	5.5	5.9	
4H	2H	4.2	5.5	4.6	5.8	6.2	4.6	5.8	4.9	6.2	6.5	
	ЗH	4.5	5.5	4.9	5.9	6.3	4.6	5.7	5.0	6.0	6.4	
	4H	4.6	5.7	5.0	6.1	6.5	4.6	5.7	5.0	6.1	6.5	
	6H	4.5	6.2	5.0	6.7	7.1	4.4	6.1	4.8	6.5	7.0	
	BH	4.5	6.4	5.0	6.8	7.3	4.3	6.2	4.8	6.6	7.	
	12H	4.5	6.4	5.0	6.9	7.4	4.2	6.1	4.7	6.6	7.	
вн	4H	4.3	6.2	4.8	6.6	7.1	4.5	6.4	5.0	6.8	7.	
	6H	4.5	6.2	5.0	6.7	7.3	4.6	6.3	5.1	6.8	7.3	
	8H	4.7	6.2	5.2	6.7	7.2	4.7	6.2	5.2	6.7	72	
	12H	5.0	5.9	5.5	6.4	6.9	4.9	5.8	5.4	6.3	6.8	
12H	4H	4.2	6.1	4.7	6.6	7.1	4.5	6.4	5.0	6.9	7.4	
	6H	4.5	6.0	5.1	6.5	7.1	4.7	6.2	5.2	6.7	7.2	
	8H	4.9	5.8	5.4	6.3	6.8	5.0	5.9	5.5	6.4	6.9	
Varia	tions wi	th the ol	bserverp	osition	at spacir	ng:						
S =	1.0H	4.0 / -2.8						4.0 / -2.8				
	1.5H	6.5 / -3.0					6.5 / -3.0					