Design iGuzzini

iGuzzini

Last information update: May 2018

adjustable luminaire - Ø 125 mm - neutral white - flood optic - frame

Product code

N086

Technical description

Round adjustable luminaire designed to use an LED lamp with C.O.B.technology in a neutral white colour tone 4,000K (CRI 80). Version with rim for surface-mounting. Painted, die-cast aluminium body. Lower reflector vacuum-metallised with aluminium vapours with an anti-scratch protective layer. Anodised aluminium upper reflector. Black, zinc-plated sheet steel bracket. The luminaire can be rotated 30° relative to the horizontal plane and 358° about the vertical axis. The luminaire is fitted with mechanical locks for light beam aiming. Painted extruded aluminium dissipater.

Installation

Recessed using torsion springs which allow easy installation in false ceilings with thickness ranging from 1 mm to 25 mm.

ø 144

Dimension (mm)

Ø144x137

Colour

White/Aluminium (39)

Weight (Kg)

0.8

Mounting

ceiling recessed

Wiring

Product complete with DALI components

Complies with EN60598-1 and pertinent regulations

Product configuration: N086

Product characteristics

Total lighting output [Lm]: 878.6

Total power [W]: 15.1

Luminous efficacy [Lm/W]: 58.2 Life Time: 50,000h - L80 - B10 (Ta 25°C)

Total luminous flux at or above an angle of 90° [Lm]: 0

Emergency luminous flux [Lm]: /

Voltage [V]: -

Number of optical assemblies: 1

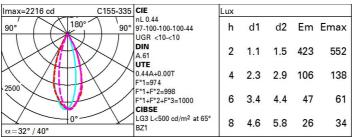
Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [%]: 44 Lamp code: LED

ZVEI Code: LED Nominal power [W]: 13 Nominal luminous [Lm]: 2000

Lamp maximum intensity [cd]: / Beam angle [°]: 32° / 40°

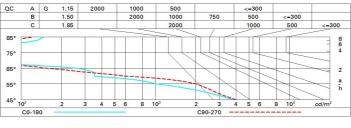
Number of lamps for optical assembly: 1


Socket:

Ballast losses [W]: 2.1 Colour temperature [K]: 4000

CRI: 80

Wavelength [Nm]: / MacAdam Step: 2


Polar

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	39	37	36	34	37	35	35	34	77
1.0	41	39	38	37	39	37	37	36	81
1.5	43	42	41	40	41	40	40	38	88
2.0	45	44	43	42	43	42	42	40	92
2.5	45	45	44	43	44	43	43	42	95
3.0	46	45	45	44	45	44	44	43	97
4.0	47	46	46	45	45	45	44	43	99
5.0	47	47	46	46	46	46	45	44	100

Luminance curve limit

UGR diagram

	av	0.70										
walls work Room X		0.70										
work Room X			0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
Room	pl.	0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30	
x	work pl. Room dim x y		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
			viewed crosswise					viewed endwise				
2H												
	2H	3.5	4.1	3.8	4.3	4.6	10.4	11.0	10.7	11.2	11.5	
	ЗН	3.4	4.0	3.7	4.2	4.5	10.3	10.8	10.6	11.1	11.	
	4H	3.4	3.9	3.7	4.2	4.4	10.2	10.7	10.5	11.0	11.3	
	бН	3.3	3.7	3.6	4.1	4.4	10.1	10.6	10.5	10.9	11.3	
	Н8	3.3	3.7	3.6	4.0	4.4	10.1	10.5	10.5	10.9	11.3	
	12H	3.2	3.6	3.6	4.0	4.3	10.1	10.5	10.4	10.8	11.	
4H	2H	3.6	4.1	3.9	4.4	4.7	10.2	10.7	10.6	11.0	11.3	
	ЗН	3.5	3.9	3.9	4.3	4.6	10.1	10.5	10.5	10.9	11.3	
	4H	3.4	3.8	3.8	4.2	4.6	10.0	10.4	10.4	10.7	11.	
	бН	3.4	3.7	3.8	4.1	4.5	9.9	10.2	10.3	10.6	11.	
	HS	3.3	3.6	3.8	4.0	4.5	9.9	10.2	10.3	10.6	11.0	
	12H	3.3	3.6	3.7	4.0	4.4	8.9	10.1	10.3	10.5	11.0	
8Н	4H	3.3	3.6	3.8	4.0	4.5	9.9	10.2	10.3	10.6	11.0	
	бН	3.2	3.5	3.7	3.9	4.4	8.8	10.0	10.2	10.5	10.	
	HS	3.2	3.4	3.7	3.9	4.4	9.7	9.9	10.2	10.4	10.	
	12H	3.2	3.3	3.7	3.8	4.3	9.7	9.9	10.2	10.3	10.	
12H	4H	3.3	3.5	3.7	4.0	4.4	9.8	10.1	10.3	10.5	11.0	
	бН	3.2	3.4	3.7	3.9	4.4	9.7	9.9	10.2	10.4	10.9	
	HS	3.2	3.3	3.7	3.8	4.3	9.7	9.9	10.2	10.3	10.9	
Varia	tions wi	th the ol	bserverp	noitieo	at spacir	ng:						
S =	1.0H	4.3 / -8.1					3.7 / -5.7					
	1.5H	6.0 / -8.2					6.4 / -16.8					