Design iGuzzini

iGuzzini

Last information update: May 2018



adjustable luminaire - Ø 75 mm - neutral white - flood optic - minimal

### Product code

N028

#### Technical description

Round adjustable luminaire designed to use an LED lamp with C.O.B.technology in a neutral white colour tone 4000K. Version without rim for mounting flush with ceiling. Lower reflector vacuum-metallised with aluminium vapours with an anti-scratch protective layer. Anodised aluminium upper reflector. Black, zinc-plated sheet steel bracket. The luminaire can be rotated 30° relative to the horizontal plane and 358° about the vertical axis. The luminaire is fitted with mechanical locks for light beam aiming. Painted extruded aluminium dissipater.

#### Installation

Installation flush with the ceiling is for false ceilings 12.5 mm thick

ø 69



# Dimension (mm)

Ø69x126

### Colour

Aluminium (12)

# Weight (Kg)

0.45

### Mounting

ceiling recessed

# Wiring

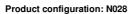
Product complete with DALI components

Complies with EN60598-1 and pertinent regulations




















## Product characteristics

Total lighting output [Lm]: 239.7

Total power [W]: 8.6

Luminous efficacy [Lm/W]: 27.9 Life Time: 50,000h - L80 - B10 (Ta 25°C)

Total luminous flux at or above an angle of 90° [Lm]: 0

Emergency luminous flux [Lm]: /

Voltage [V]: -

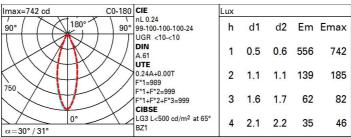
Number of optical assemblies: 1

# Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [%]: 24

Lamp code: LED ZVEI Code: LED Nominal power [W]: 6.2

Nominal luminous [Lm]: 1000 Lamp maximum intensity [cd]: / Beam angle [°]: 30° / 31° Number of lamps for optical assembly: 1


Socket:

Ballast losses [W]: 2.4 Colour temperature [K]: 4000

CRI: 80

Wavelength [Nm]: / MacAdam Step: 2

# Polar



# Utilisation factors

| R    | 77 | 75 | 73 | 71 | 55 | 53 | 33 | 00 | DRR |
|------|----|----|----|----|----|----|----|----|-----|
| K0.8 | 22 | 20 | 20 | 19 | 20 | 19 | 19 | 19 | 78  |
| 1.0  | 23 | 22 | 21 | 20 | 21 | 21 | 20 | 20 | 82  |
| 1.5  | 24 | 23 | 22 | 22 | 23 | 22 | 22 | 21 | 88  |
| 2.0  | 24 | 24 | 23 | 23 | 24 | 23 | 23 | 22 | 93  |
| 2.5  | 25 | 24 | 24 | 24 | 24 | 24 | 24 | 23 | 95  |
| 3.0  | 25 | 25 | 25 | 24 | 24 | 24 | 24 | 23 | 97  |
| 4.0  | 25 | 25 | 25 | 25 | 25 | 25 | 24 | 24 | 99  |
| 5.0  | 26 | 25 | 25 | 25 | 25 | 25 | 25 | 24 | 100 |

# Luminance curve limit

| 2C     | Α              | G | 1.15 | 2000 | 1   | 000 | 500     |         | <   | -300 |                   |                   |
|--------|----------------|---|------|------|-----|-----|---------|---------|-----|------|-------------------|-------------------|
|        | В              |   | 1.50 |      | 2   | 000 | 1000    | 750     |     | 500  | <=300             |                   |
|        | С              |   | 1.85 |      |     |     | 2000    |         | 1   | 1000 | 500               | <=300             |
|        |                |   |      |      | _   |     | _       | _ /     |     |      |                   |                   |
| 35° [  |                |   |      |      |     |     |         |         |     |      |                   | - 8               |
|        | 177            |   | _    |      |     |     |         |         |     |      |                   | ] ;               |
| '5°    | /              |   |      |      |     |     |         |         |     | -    |                   | -                 |
| 1      |                |   |      |      |     |     | /       | 1       |     | 1    |                   |                   |
| 35°    |                |   |      |      |     |     |         |         |     |      |                   |                   |
| - 1    | 7              |   |      |      |     |     | `       | 1 1     |     | 1    | 1                 | _   :             |
| 55°    |                |   |      |      |     |     |         |         | 1   |      |                   |                   |
|        |                |   |      |      |     |     |         |         |     |      |                   |                   |
| 15° 10 | 0 <sup>2</sup> |   | 2    | 3 4  | 5 6 | 8 1 | $0^{3}$ | 2 3     | 4 9 | 5 6  | 8 10 <sup>4</sup> | cd/m <sup>2</sup> |
|        |                |   |      |      |     |     |         | C90-270 |     |      |                   |                   |

# UGR diagram

|                                      |          |           |          |         |           | server steare a | 201100110 |         |      |      |      |  |  |
|--------------------------------------|----------|-----------|----------|---------|-----------|-----------------|-----------|---------|------|------|------|--|--|
| Rifle                                | ct.:     |           |          |         |           |                 |           |         |      |      |      |  |  |
| ceil/cav                             |          | 0.70      | 0.70     | 0.50    | 0.50      | 0.30            | 0.70      | 0.70    | 0.50 | 0.50 | 0.30 |  |  |
| walls<br>work pl.<br>Room dim<br>x y |          | 0.50      | 0.30     | 0.50    | 0.30      | 0.30            | 0.50      | 0.30    | 0.50 | 0.30 | 0.30 |  |  |
|                                      |          | 0.20      | 0.20     | 0.20    | 0.20      | 0.20            | 0.20      | 0.20    | 0.20 | 0.20 | 0.20 |  |  |
|                                      |          | viewed    |          |         |           |                 |           | viewed  |      |      |      |  |  |
|                                      |          | crosswise |          |         |           |                 |           | endwise |      |      |      |  |  |
| 2H                                   | 2H       | 7.3       | 7.8      | 7.5     | 0.8       | 8.3             | 0.8       | 8.6     | 8.3  | 8.8  | 9.0  |  |  |
|                                      | ЗН       | 7.1       | 7.6      | 7.4     | 7.9       | 8.2             | 7.9       | 8.4     | 8.2  | 8.6  | 8.8  |  |  |
|                                      | 4H       | 7.1       | 7.5      | 7.4     | 7.8       | 8.1             | 7.8       | 8.3     | 8.1  | 8.6  | 8.8  |  |  |
|                                      | бН       | 7.0       | 7.4      | 7.3     | 7.7       | 8.1             | 7.7       | 8.2     | 8.1  | 8.5  | 8.8  |  |  |
|                                      | нв       | 7.0       | 7.4      | 7.3     | 7.7       | 0.8             | 7.7       | 8.1     | 0.8  | 8.4  | 8.8  |  |  |
|                                      | 12H      | 6.9       | 7.3      | 7.3     | 7.7       | 0.8             | 7.6       | 0.8     | 0.8  | 8.4  | 8.7  |  |  |
| 4H                                   | 2H       | 7.0       | 7.5      | 7.4     | 7.8       | 8.1             | 7.8       | 8.3     | 8.1  | 8.6  | 8.8  |  |  |
|                                      | ЗН       | 6.9       | 7.3      | 7.3     | 7.6       | 0.8             | 7.6       | 8.1     | 0.8  | 8.4  | 8.   |  |  |
|                                      | 4H       | 6.8       | 7.2      | 7.2     | 7.5       | 7.9             | 7.6       | 7.9     | 0.8  | 8.3  | 8.   |  |  |
|                                      | бН       | 6.8       | 7.1      | 7.2     | 7.5       | 7.9             | 7.5       | 7.8     | 7.9  | 8.2  | 8.8  |  |  |
|                                      | HS       | 6.7       | 7.0      | 7.2     | 7.4       | 7.9             | 7.4       | 7.7     | 7.9  | 8.1  | 8.6  |  |  |
|                                      | 12H      | 6.7       | 7.0      | 7.2     | 7.4       | 7.9             | 7.4       | 7.6     | 7.8  | 8.1  | 8.8  |  |  |
| вн                                   | 4H       | 6.7       | 7.0      | 7.1     | 7.4       | 7.8             | 7.5       | 7.7     | 7.9  | 8.2  | 8.8  |  |  |
|                                      | 6H       | 6.6       | 6.9      | 7.1     | 7.3       | 7.8             | 7.4       | 7.6     | 7.8  | 8.1  | 8.8  |  |  |
|                                      | HS       | 6.6       | 8.8      | 7.1     | 7.3       | 7.8             | 7.3       | 7.5     | 7.8  | 0.8  | 8.8  |  |  |
|                                      | 12H      | 6.6       | 8.6      | 7.1     | 7.3       | 7.8             | 7.3       | 7.5     | 7.8  | 0.8  | 2.8  |  |  |
| 12H                                  | 4H       | 6.6       | 6.9      | 7.1     | 7.3       | 7.8             | 7.4       | 7.7     | 7.9  | 8.1  | 8.6  |  |  |
|                                      | 6H       | 6.6       | 6.8      | 7.1     | 7.3       | 7.8             | 7.4       | 7.6     | 7.8  | 0.8  | 8.8  |  |  |
|                                      | HS       | 6.6       | 6.7      | 7.1     | 7.2       | 7.7             | 7.3       | 7.5     | 7.8  | 0.8  | 8.8  |  |  |
| Varia                                | tions wi | th the ol | oserverp | noitien | at spacir | ng:             |           |         |      |      |      |  |  |
| S =                                  | 1.0H     |           | 5        | 3 / -10 | 2         | 4.8 / -10.3     |           |         |      |      |      |  |  |
|                                      | 1.5H     |           | 8        | 1 / -10 | .5        | 7.6 / -11.2     |           |         |      |      |      |  |  |