Last information update: May 2018

(

5 - cell Recessed luminaire - LED - Warm white - Incorporated DALI dimmable power supply - Wide Flood optic

Product code

MQ81

Technical description

rectangular miniaturised recessed luminaire with 5 optical elements with LED lamps - fixed optics - wide flood beam angle. Main body with die-cast aluminium radiant surface, version with perimeter surface frame. Metallised thermoplastic high definition optics, integrated in a rear position in the black anti-glare screen; the structure of the optical system prevents a pinpoint effect, allowing precise, circular light distribution and emission with controlled glare. Supplied with DALI dimmable electronic control gear connected to the luminaire. Warm white high colour rendering LED

Installation

recessed with steel wire springs for false ceilings from 1 to 25 mm thick - preparation hole 37×141

Dimension (mm)

$148 \times 44 \times 54$

Colour

White (01) | White/Brass (41) | Black/Black (43) | Black/White (47) | Grey/Black (74) | (E7)

Weight (Kg)

0.29

Mounting

wall recessed|ceiling recessed

Wiring

on control gear box; screw connections with terminal block included

IP20
IP23 On the visible part of the product once installed
 EH[A+*

Product configuration: MQ81

Product characteristics

Total lighting output [Lm]: 704.9
Total luminous flux at or above an angle of 90° [Lm]: 0
Total power [W]: 13
Luminous efficacy [Lm/W]: 54.2
Voltage [V]:
Life Time: 50,000h-L90-B10 (Ta $25^{\circ} \mathrm{C}$)
Number of optical assemblies: 1

Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [\%]: 83
Lamp code: LED
Number of lamps for optical assembly: 1
Socket: /
ZVEI Code: LED
Ballast losses [W]: 3
Nominal power [W]: 10
Colour temperature [K]: 3000
Nominal luminous [Lm]: 850
Lamp maximum intensity [cd]: /
Beam angle [${ }^{\circ}$]: 48°

Wavelength [Nm]: /
MacAdam Step: 3

Polar

R	77	75	73	71	55	53	33	00	DRR
K 0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	79	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	86	85	83	100

UGR diagram

Corrected UGR values (at 850 Im bare lamp lumino us flux)											
Rifle ceil/ wall work Roo x	v pl. dim y	$\begin{aligned} & 0.70 \\ & 0.50 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.30 \\ & 0.20 \end{aligned}$	0.50 0.50 0.20 viewed osswis	$\begin{aligned} & 0.50 \\ & 0.30 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.30 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.50 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.30 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.20 \end{aligned}$ viewed endwise	$\begin{aligned} & 0.50 \\ & 0.30 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.30 \\ & 0.20 \end{aligned}$
2 H	2 H	1.2	1.6	1.4	1.9	2.1	1.2	1.6	1.4	1.9	2.1
	3 H	1.0	1.5	1.3	1.7	2.0	1.0	1.5	1.3	1.7	2.0
	4 H	1.0	1.4	1.3	1.7	2.0	1.0	1.4	1.3	1.7	2.0
	6 H	0.9	1.3	1.2	1.6	1.9	0.9	1.3	1.2	1.6	1.9
	8 H	0.9	1.2	1.2	1.5	1.9	0.9	1.2	1.2	1.5	1.9
	12H	0.8	1.2	1.2	1.5	1.9	0.8	1.2	1.2	1.5	1.8
4 H	2 H	1.0	1.4	1.3	1.7	2.0	1.0	1.4	1.3	1.7	2.0
	3 H	0.8	1.2	1.2	1.5	1.8	0.8	1.2	1.2	1.5	1.9
	4 H	0.7	1.0	1.1	1.4	1.8	0.7	1.0	1.1	1.4	1.8
	6 H	0.6	0.9	1.1	1.3	1.7	0.6	0.9	1.1	1.3	1.7
	8 H	0.6	0.8	1.0	1.3	1.7	0.6	0.8	1.0	1.3	1.7
	12H	0.5	0.8	1.0	1.2	1.7	0.5	0.8	1.0	1.2	1.7
8 H	4 H	0.6	0.8	1.0	1.3	1.7	0.6	0.8	1.0	1.3	1.7
	6 H	0.5	0.7	1.0	1.2	1.6	0.5	0.7	1.0	1.2	1.6
	8 H	0.4	0.6	0.9	1.1	1.6	0.4	0.6	0.9	1.1	1.6
	12H	0.4	0.5	0.9	1.0	1.6	0.4	0.5	0.9	1.0	1.5
12H	4 H	0.5	0.8	1.0	1.2	1.7	0.5	0.8	1.0	1.2	1.7
	6 H	0.4	0.6	0.9	1.1	1.6	0.4	0.6	0.9	1.1	1.6
	8 H	0.4	0.5	0.9	1.0	1.5	0.4	0.5	0.9	1.0	1.6
Variations with the o bserver position at spacing:											
$\mathrm{S}=$	1.0 H			/ -18					. 9 / -18.		
	1.5 H			/ -18					. 7 / -18		
	2.0 H			/ -18					1.7 / -18		

