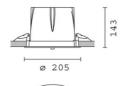
Design Iosa Ghini

iGuzzini

Last information update: June 2018


recessed luminaire Ø 205 - neutral white passive dissipation LED - integrated DALI control gear - flood

Product code

MP08

Technical description

recessed adjustable removable luminaire for LED lamp with passive heat dissipation system. Structure with die-cast aluminium frame and main body; shaped surface with high level radiant effect for effectively reducing the temperature and keeping the long-term LED lamp performance unchanged. Steel rotation hinge, chrome-plated aluminium body closing ring. High performance reflector made of super-pure aluminium - flood beam angle. Body adjusted using manually operated device: internal 30° - external 75° - rotation about axis 355°. Supplied with DALI dimmable control gear connected to the luminaire. Neutral white high efficiency LED.

ø 195

Installation

recessed using steel springs in false ceilings with thicknesses starting at 1 mm; preparation hole Ø 195

Dimension (mm)

Ø205x143

Colour

White/Aluminium (39) | Grey/Aluminium (78)

Weight (Kg)

2.22

Mounting

ceiling recessed

Wiring

on control gear box with quick-coupling connections

Complies with EN60598-1 and pertinent regulations

Product configuration: MP08

Product characteristics

Total lighting output [Lm]: 4096 Total power [W]: 34.2 Luminous efficacy [Lm/W]: 119.8

Life Time: > 50,000h - L80 - B10 (Ta 25°C)

Total luminous flux at or above an angle of 90° [Lm]: 0

Emergency luminous flux [Lm]: / Voltage [V]: -

Number of optical assemblies: 1

Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [%]: 82

Lamp code: LED ZVEI Code: LED Nominal power [W]: 31 Nominal luminous [Lm]: 5000 Lamp maximum intensity [cd]: / Beam angle [°]: 36° Number of lamps for optical assembly: 1

Socket: /

Ballast losses [W]: 3.2 Colour temperature [K]: 4000

CRI: 80

Wavelength [Nm]: / MacAdam Step: 2

Polar

lmax=9459 cd	CIE	Lux			
90° 180° 90°	nL 0.82 99-100-100-100-82	h	d	Em	Emax
	UGR 16.4-16.4 DIN A.61 UTE	2	1.3	1838	2365
	0.82A+0.00T F"1=986	4	2.6	459	591
10500	F"1+F"2=998 F"1+F"2+F"3=1000 CIBSE	6	3.9	204	263
α=36°	LG3 L<3000 cd/m² at 65° UGR<19 L<3000 cd/mq @	_{65°} 8	5.2	115	148

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	74	70	67	65	69	66	66	63	77
1.0	77	73	71	69	73	70	70	67	82
1.5	81	78	76	74	77	75	75	72	88
2.0	83	81	80	79	80	79	78	76	92
2.5	85	83	82	81	82	81	80	78	95
3.0	86	85	84	83	84	83	82	80	97
4.0	87	86	86	85	85	84	83	81	99
5.0	87	87	86	86	86	85	84	82	100

Luminance curve limit

,	Α	G	1.15		2000		1	000	500			<	-300			
	В		1.50	9			2	000	1000		750		500	<	-300	
-	С		1.85						2000				1000		500	<=300
					T		7	7			+	\top				8 6
								_		7	\forall					4
											7					2 a
			2	3	4	5	6	8	10°	2	3	4	5 6	8	10°	cd/m ²
²	-18	0	2	3	4	5	6	8	10 ³	2	3	4	5 6	8	•	104

Corne	cted OC	in value:	3 (at 5000	Jim ban	e iamp ii	eu oni mu	TIUX)						
Rifled	et.:												
ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30		
walls		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30		
work pl. Room dim x y		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20		
		viewed						viewed					
			C	rosswis	e	endwise							
2H	2H	17.0	17.6	17.3	17.8	18.1	17.0	17.6	17.3	17.8	18.		
	ЗН	16.9	17.4	17.2	17.7	18.0	16.9	17.4	17.2	17.7	18.		
	4H	16.8	17.3	17.1	17.6	17.9	16.8	17.3	17.1	17.6	17.9		
	бН	16.7	17.2	17.1	17.5	17.8	16.7	17.2	17.1	17.5	17.		
	HS	16.7	17.1	17.0	17.5	17.8	16.7	17.1	17.0	17.5	17.		
	12H	16.6	17.1	17.0	17.4	17.8	16.6	17.1	17.0	17.4	17.		
4H	2H	16.8	17.3	17.1	17.6	17.9	16.8	17.3	17.1	17.6	17.		
	ЗН	16.6	17.1	17.0	17.4	17.8	16.6	17.1	17.0	17.4	17.8		
	4H	16.6	16.9	17.0	17.3	17.7	16.6	16.9	17.0	17.3	17.		
	6H	16.5	16.8	16.9	17.2	17.6	16.5	16.8	16.9	17.2	17.		
	HS	16.4	16.7	16.9	17.1	17.6	16.4	16.7	16.9	17.1	17.		
	12H	16.4	16.7	16.8	17.1	17.5	16.4	16.7	16.8	17.1	17.		
вн	4H	16.4	16.7	16.9	17.1	17.6	16.4	16.7	16.9	17.1	17.		
	6H	16.3	16.6	16.8	17.0	17.5	16.3	16.6	16.8	17.0	17.		
	HS	16.3	16.5	16.8	17.0	17.5	16.3	16.5	16.8	17.0	17.		
	12H	16.2	16.4	16.7	16.9	17.4	16.2	16.4	16.7	16.9	17.		
12H	4H	16.4	16.7	16.8	17.1	17.5	16.4	16.7	16.8	17.1	17.		
	бН	16.3	16.5	16.8	17.0	17.5	16.3	16.5	16.8	17.0	17.		
	HS	16.2	16.4	16.7	16.9	17.4	16.2	16.4	16.7	16.9	17.		
		th the ob	T. CADELLES		The second	ıg:							
S =	1.0H			8 / -12					.8 / -12				
	1.5H 2.0H			6 / -13 .6 / -1				3.6 / -13 0.6 / -15					