Design iGuzzini

iGuzzini

Last information update: May 2018

Warm White - Wide Flood Optic

Product code

N290

Technical description

Adjustable spotlight with adapter for installation on a mains voltage track. Luminaire made of die-cast aluminium. Spotlight double adjustability allows a 360° rotation about the vertical axis and 90° tilting relative to the horizontal plane. Mechanical aiming locks both for rotation about the vertical axis and tilting relative to the horizontal plane. Equipped with electronic ballast. Luminaire complete with LED unit, C.O.B. technology, and wide flood optic with warm white colour 3000K.

Installation

On an electrified track

Dimension (mm)

Ø92x127

White (01) | Black (04) | Grey/Black (74)

Weight (Kg)

0.95

Mounting

three circuit track

Wiring

product complete with electronic components

Complies with EN60598-1 and pertinent regulations

Product configuration: N290

Product characteristics

Total lighting output [Lm]: 1658 Total power [W]: 15.4 Luminous efficacy [Lm/W]: 107.6

Life Time: > 50,000h - L80 - B10 (Ta 25°C)

Total luminous flux at or above an angle of 90° [Lm]: 0

Emergency luminous flux [Lm]: /

Voltage [V]:

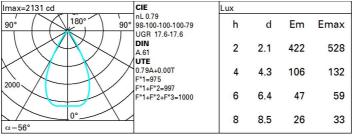
Number of optical assemblies: 1

Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [%]: 79 Lamp code: LED

ZVEI Code: LED Nominal power [W]: 14 Nominal luminous [Lm]: 2100 Lamp maximum intensity [cd]: / Beam angle [°]: 56°

Number of lamps for optical assembly: 1


Socket: /

Ballast losses [W]: 1.4 Colour temperature [K]: 3000

CRI: 80

Wavelength [Nm]: / MacAdam Step: 2

Polar

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	70	67	64	62	66	63	63	61	77
1.0	74	70	68	66	69	67	67	64	81
1.5	78	75	73	71	74	72	72	69	88
2.0	80	78	77	75	77	76	75	73	92
2.5	82	80	79	78	79	78	77	75	95
3.0	83	82	81	80	80	80	79	77	97
4.0	84	83	82	82	82	81	80	78	99
5.0	84	84	83	83	82	82	81	79	100

Luminance curve limit

QC	Α	G	1.15	2	000		1	000		500			<=3	00			
	В		1.50				2	000		1000	75	0	50	0		<=300	
	C		1.85							2000			100	00		500	<=300
050 -								_	-		_ /						
85°																	8 6
75°				\perp	_	_		_			44	\sqcup			_	1	_ 4
.										111	1		-		-	_	
65°				+	-	+	_	_	_					\rightarrow		_	2
											1		1	1	1	_	a
55°				_	+	+	+	_	_			1	_			_	
												1		_	-		
45° 10) ²		2	3	4	5	6	8	10 ³		2	3 4	5	6	8	10 ⁴	cd/m²
	C0-180) -					_				C90-27	0					

UGR diagram

	ottou o c	R values	0 100 2 100	o min bon	o lomp to	illillio d 3	liux/					
Rifle	et.:											
ceil/cav walls work pl. Room dim		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30	
		0.20		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
		5351555		viewed		viewed						
X	У		(eiweeor	e	endwise						
2H	2H	18.1	18.8	18.4	19.0	19.2	18.1	18.8	18.4	19.0	19.2	
	ЗН	18.0	18.6	18.3	18.8	19.1	18.0	18.6	18.3	18.8	19.1	
	4H	18.0	18.5	18.3	18.8	19.1	17.9	18.5	18.3	18.7	19.0	
	бН	17.9	18.3	18.2	18.7	19.0	17.9	18.3	18.2	18.6	19.0	
	HS	17.8	18.3	18.2	18.6	19.0	17.8	18.3	18.2	18.6	18.9	
	12H	17.8	18.2	18.2	18.6	18.9	17.8	18.2	18.2	18.6	18.9	
4H	2H	17.9	18.5	18.3	18.7	19.0	18.0	18.5	18.3	18.8	19.	
	ЗН	17.8	18.2	18.2	18.6	18.9	17.8	18.2	18.2	18.6	18.9	
	4H	17.7	18.1	18.1	18.5	18.9	17.7	18.1	18.1	18.5	18.9	
	6H	17.6	18.0	18.1	18.4	18.8	17.6	18.0	18.1	18.4	18.8	
	HS	17.6	17.9	18.0	18.3	18.8	17.6	17.9	18.0	18.3	18.8	
	12H	17.6	17.8	18.0	18.3	18.7	17.6	17.8	18.0	18.3	18.	
вн	4H	17.6	17.9	18.0	18.3	18.8	17.6	17.9	18.0	18.3	18.8	
	6H	17.5	17.8	18.0	18.2	18.7	17.5	17.8	18.0	18.2	18.	
	HS	17.5	17.7	18.0	18.1	18.6	17.5	17.7	18.0	18.1	18.0	
	12H	17.4	17.6	17.9	18.1	18.6	17.4	17.6	17.9	18.1	18.0	
12H	4H	17.6	17.8	18.0	18.3	18.7	17.6	17.8	18.0	18.3	18.7	
	бН	17.5	17.7	17.9	18.1	18.6	17.5	17.7	18.0	18.1	18.6	
	HS	17.4	17.6	17.9	18.1	18.6	17.4	17.6	17.9	18.1	18.6	
Varia	tions wi	th the ob	serverp	osition	at spacin	g:						
S =	1.0H		5.	6 / -11	.9			5	.6 / -11	.9		
	1.5H		8.	4 / -13	.1		8.4 / -13.1					
	2.0H		10	.4 / -13	3.6			10	0.4 / -13	3.6		