Design iGuzzini

iGuzzini

Last information update: May 2018

pendant - Warm White - Wide Flood Optic

Ē

Product code N278

Technical description

Pendant luminaire equipped with a three-phase adapter for electrified tracks or a base, made of die-cast aluminium and thermoplastic material. The pendant system consists of steel cables L=2000 that provide a simple mechanical anchoring system. Having been rotated and tilted, the luminaire can be locked mechanically in position to ensure efficient light aiming (during maintenance operations too). Luminaire for high output C.O.B.technology LED lamp with monochrome emission in a warm white colour tone (3000K) CRI 90. Wide flood optic. Equipped with electronic ballast. Equipped with an accessory holding ring designed to contain a flat accessory. An external component may also be applied, such as directional flaps with 360° rotation.

Installation

On an electrified track or base

ø116

Ø116x250

Dimension (mm)

Colour White (01) | Black (04)

Weight (Kg) 1.7

Mounting three circuit track pendant|ceiling surface

Wiring

product complete with electronic components

Product configuration: N278

Product characteristics

Total lighting output [Lm]: 1678 Total power [W]: 19.4 Luminous efficacy [Lm/W]: 86.5 Life Time: > 50,000h - L80 - B10 (Ta 25°C)

Optical assembly Characteristics Type 1

Light Output Ratio (L.O.R.) [%]: 80 Lamp code: LED ZVEI Code: LED Nominal power [W]: 17 Nominal luminous [Lm]: 2100 Lamp maximum intensity [cd]: / Beam angle [°]: 42° Total luminous flux at or above an angle of 90 $^{\circ}$ [Lm]: 0 Emergency luminous flux [Lm]: / Voltage [V]: - Number of optical assemblies: 1

Complies with EN60598-1 and pertinent regulations

Number of lamps for optical assembly: 1 Socket: / Ballast losses [W]: 2.4 Colour temperature [K]: 3000 CRI: 90 Wavelength [Nm]: / MacAdam Step: 2

Polar				
Imax=3566 cd CIE	Lux			
90° 180° 90° 99-100-100-100-80 UUGR <10-<10	e (h d	Em	Emax
		2 1.5	717	885
4000	3	4 3.1	179	221
F"1+F"2=998 F"1+F"2+F"3=999 CIBSE	3	6 4.6	80	98
α=42°	at 65°	8 6.1	45	55

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	72	68	66	63	67	65	65	62	78
1.0	75	72	69	67	71	69	68	66	82
1.5	79	76	74	73	75	74	73	70	88
2.0	81	79	78	77	78	77	76	74	93
2.5	83	81	80	79	80	79	78	76	95
3.0	84	83	82	81	82	81	80	78	97
4.0	85	84	84	83	83	82	81	79	99
5.0	85	85	84	84	84	83	82	80	100

Luminance curve limit

ac	AC	3	1.15	200	00	1	000	500		<-3	300		
	в		1.50			2	000	1000	750	50	00	<-300	
	С		1.85					2000		10	00	500	<-300
35° [ъίп		-	TT-	= 8
5° –				-	-		+		H		-		4
5°				-	-			\rightarrow	\mathbb{N}		\uparrow	\square	2
55°				+	-				\mathbb{N}			\geq	- i
45° 102			2	3	4	56	8 1	0 ³	2 3	4 5	6	8 10 ⁴	cd/m ²
C	0-180	_							C90-270				

UGR diagram

D'AL.											
Rifle		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
ceil/cav walls work pl.		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	n dim	0.20	0.20	viewed		0.20	0.20	0.20	viewed	0.20	0.20
x	У			crosswis		endwise					
2H	2H	7.5	0.8	7.7	8.3	8.5	7.5	8.0	7.7	8.3	8.5
	ЗH	7.4	0.8	7.7	8.2	8.5	7.4	7.9	7.7	8.2	8.4
	4H	7.4	7.9	7.8	8.2	8.5	7.3	7.8	7.6	8.1	8.4
	6H	7.4	7.9	7.8	8.2	8.5	7.2	7.7	7.6	0.8	8.3
	BH	7.4	7.8	7.8	8.2	8.5	7.2	7.6	7.6	0.8	8.3
	12H	7.4	7.8	7.8	8.2	8.5	7.2	7.6	7.5	7.9	8.3
4H	2H	7.3	7.8	7.6	8.1	8.4	7.4	7.9	7.8	8.2	2.8
	ЗH	7.3	7.7	7.7	8.1	8.4	7.4	7.8	7.7	8.1	8.8
	4H	7.3	7.7	7.7	8.1	8.4	7.3	7.7	7.7	8.1	8.4
	6H	7.4	7.7	7.8	8.1	8.5	7.3	7.6	7.7	0.8	8.4
	HS	7.4	7.7	7.8	8.1	8.5	7.3	7.5	7.7	0.8	8.4
	12H	7.4	7.6	7.8	8.1	8.5	7.2	7.5	7.7	7.9	8.4
вн	4H	7.3	7.5	7.7	8.0	8.4	7.4	7.7	7.8	8.1	8.5
	6H	7.3	7.6	7.8	0.8	8.5	7.4	7.6	7.8	8.1	8.5
	BH	7.4	7.6	7.8	0.8	8.5	7.4	7.6	7.8	0.8	8.5
	12H	7.4	7.6	7.9	0.8	8.6	7.3	7.5	7.8	0.8	8.5
12H	4H	7.2	7.5	7.7	7.9	8.4	7.4	7.6	7.8	8.1	8.5
	6H	7.3	7.5	7.8	0.8	8.5	7.4	7.6	7.9	0.8	8.5
	8H	7.3	7.5	7.8	8.0	8.5	7.4	7.6	7.9	0.8	8.6
Varia	tions wi	th the ol	bserverp	osition	at spacir	ng:					
S =	1.0H		5	.3 / -4	9	5.3 / -4.9					
	1.5H		8	.0 / -5	.3	8.0 / -5.3					