
Design iGuzzini

iGuzzini

Last information update: May 2018

K.

158

Small body Spotlight - LED Warm White - Electronic ballast - Flood Optic

Product code MN48

Technical description

Adjustable indoor spotlight with adapter for installation on mains electrified track, for high output LED lamp with monochrome emission in a warm white colour. Flood optic. Luminaire made of die-cast aluminium. Twin adjustability allows 360° rotation about the vertical axis and 90° tilting relative to the horizontal plane. Mechanical locks for aiming, for rotation on horizontal plane and around vertical axis. Equipped with electronic ballast.

Installation

Electrified track or base, to be ordered as an accessory

Dimension (mm)

Ø116x158 Colour

White (01) | Black (04) | Grey/Black (74)

Weight (Kg) 1.4

Mounting three circuit track

Wiring

Electronic components housed in the luminaire.

Product configuration: MN48

Product characteristics

Total lighting output [Lm]: 1678 Total power [W]: 19.4 Luminous efficacy [Lm/W]: 86.5 Life Time: > 50,000h - L80 - B10 (Ta 25°C) Total luminous flux at or above an angle of 90 $^{\circ}$ [Lm]: 0 Emergency luminous flux [Lm]: / Voltage [V]: - Number of optical assemblies: 1

Complies with EN60598-1 and pertinent regulations

Optical assembly Characteristics Type 1 Light Output Ratio (L.O.R.) [%]: 80 Lamp code: LED ZVEI Code: LED Nominal power [W]: 17 Nominal luminous [Lm]: 2100 Lamp maximum intensity [cd]: / Beam angle [°]: 42°

Number of lamps for optical assembly: 1 Socket: / Ballast losses [W]: 2.4 Colour temperature [K]: 3000 CRI: 90

Wavelength [Nm]: / MacAdam Step: 2

Polar

Imax=3566 cd	CIE	Lux			
90° 180° 90°	nL 0.80 99-100-100-100-80	h	d	Em	Emax
	UGR <10-<10 DIN A.61 UTE	2	1.5	717	885
\times \times \times \times	0.80A+0.00T F"1=991	4	3.1	179	221
4000	F"1+F"2=998 F"1+F"2+F"3=999 CIBSE	6	4.6	80	98
α=42°	LG3 L<1000 cd/m ² at 65°	8	6.1	45	55

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	72	68	66	63	67	65	65	62	78
1.0	75	72	69	67	71	69	68	66	82
1.5	79	76	74	73	75	74	73	70	88
2.0	81	79	78	77	78	77	76	74	93
2.5	83	81	80	79	80	79	78	76	95
3.0	84	83	82	81	82	81	80	78	97
4.0	85	84	84	83	83	82	81	79	99
5.0	85	85	84	84	84	83	82	80	100

Luminance curve limit

QC	Α	G	1.15	20	000		10	000	5	00			<	-300				
	в		1.50				20	00	1	000	75	0		500		<=300	(
	С		1.85						2	000			1	000		500	<	-300
85°					T		1				T (11				F		3 8
75°					-			+	Ļ		Ų	H						- 6 - 4
65°				-	+			1			$\overline{}$			\mathbb{A}	-	$\overline{}$		2
55°				-	+				1						\downarrow		_	a h
45° 1	0 ²		2	3	4	5	6	8 1	0 ³	2		3	4 !	5 6	8	104	cd/r	n ²
	C0-18	0 -					-			1	C90-27	0 -						

UGR diagram

Rifle	ct c										
ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls work pl. Room dim x y		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
		8323600		viewed		viewed					
			0	crosswis	e	endwise					
2H	2H	7.5	0.8	7.7	8.3	8.5	7.5	8.0	7.7	8.3	8.5
	ЗH	7.4	0.8	7.7	8.2	8.5	7.4	7.9	7.7	8.2	8.4
	4H	7.4	7.9	7.8	8.2	8.5	7.3	7.8	7.6	8.1	8.4
	6H	7.4	7.9	7.8	8.2	8.5	7.2	7.7	7.6	0.8	8.3
	BH	7.4	7.8	7.8	8.2	8.5	7.2	7.6	7.6	0.8	8.3
	12H	7.4	7.8	7.8	8.2	8.5	7.2	7.6	7.5	7.9	8.3
4H	2H	7.3	7.8	7.6	8.1	8.4	7.4	7.9	7.8	8.2	8.5
	ЗH	7.3	7.7	7.7	8.1	8.4	7.4	7.8	7.7	8.1	8.5
	4H	7.3	7.7	7.7	8.1	8.4	7.3	7.7	7.7	8.1	8.4
	6H	7.4	7.7	7.8	8.1	8.5	7.3	7.6	7.7	0.8	8.4
	HS	7.4	7.7	7.8	8.1	8.5	7.3	7.5	7.7	0.8	8.4
	12H	7.4	7.6	7.8	8.1	8.5	7.2	7.5	7.7	7.9	8.4
вн	4H	7.3	7.5	7.7	8.0	8.4	7.4	7.7	7.8	8.1	8.5
	6H	7.3	7.6	7.8	0.8	8.5	7.4	7.6	7.8	8.1	8.5
	BH	7.4	7.6	7.8	0.8	8.5	7.4	7.6	7.8	0.8	8.5
	12H	7.4	7.6	7.9	0.8	8.6	7.3	7.5	7.8	0.8	8.5
12H	4H	7.2	7.5	7.7	7.9	8.4	7.4	7.6	7.8	8.1	8.5
	6H	7.3	7.5	7.8	0.8	8.5	7.4	7.6	7.9	0.8	8.5
	8H	7.3	7.5	7.8	8.0	8.5	7.4	7.6	7.9	0.8	8.6
Varia	tions wi	th the ol	oservern	osition	at spacir	ng:					
S =	1.0H		5	.3 / -4	9	5.3 / -4.9					
	1.5H		8	.0 / -5	.3	8.0 / -5.3					